百度的大模型棋局,都藏在这些李彦宏的非共识中
作为中国最早一批AI先行者,向来低调温和的 李彦宏 ,在过去一年多来分外活跃,经常提出一些「与众不同」的观点。
比如,当国内外科技公司都在疯狂卷大模型,卷参数、卷数据训练时,李彦宏的发声是「不要重复造轮子,模型的意义在于应用。」
当应用开始被逐渐重视起来,很多人争相打造 C 端 AI 爆款,复制互联网时代「超级 APP」的神话时,作为互联网时代最成功的创业者之一,李彦宏认为「大模型对于 ToB 业务的改造,比互联网对于 ToB 的影响力要大一个数量级。」
卷应用下半场中,当很多人跟风造应用,摸不准方向时。他先注意到,下一个应用趋势将是智能体,而当时智能体在行业还算是新物种、非共识。
而与这种市场敏锐捕捉同时发生的,还有百度内部毫无偏差地执行。
李彦宏一直说大模型要卷应用,如今 文心大模型 发布近一年多来后,百度仍在持续致力于降低普通人开发应用的门槛。经过一年的实践,今天,百度推出的 智能体开发工具 文心智能体平台已吸引 15 万家企业、80 万名开发者。
这种敏锐的直觉与执行究竟从何而来?
在中国大模型从探索到落地的过程中,百度已经不只是一个企业,更是一个代表性案例,记录着产业进化中,一个超级巨头如何从变革自我到变革行业的故事 。
01
不断验证的「非共识」
放眼国内,你可能很难找到比李彦宏更虔诚的AI信仰者。
早在 2012 年百度就由李彦宏带队组建了国内最早的 AI 研究院,到了 2019 年前后,李彦宏的 40 次公开演讲、15 万字,次次不离 AI。作为全国政协委员,李彦宏更在连续 8 年的「两会」中,提出了 13 份 AI 相关提案。但凡对 AI 有兴趣者,无论是国家领导、相关企业,还是学生,李彦宏都要向他们「安利」AI。
自 2022 年底大模型爆发开始,李彦宏对 AI 的「布道」逐渐密集了起来。
2023 年的「百模赶考」期间,6 月份,国产大模型的数量还不到 80 个,而仅仅四个月过去,去年 10 月,国内发布大模型超过 230 个。
在大模型最热的时期,向来低调的李彦宏一改温和往日风格,直言「 不断地重复开发各种各样的基础大模型,是对社会资源的一个极大浪费」。
来自红杉资本调查的一组数据显示,去年英伟达芯片订单高达 500 亿美元,而整个生成式 AI 企业的收入才 30 亿美元。而这其中,Open AI 等极少数头部玩家,又拿走了其中绝大部分的收入。
但不卷大模型该卷什么呢?
在李彦宏看来, 「要卷AI应用,不要重复造轮子」,「没有构建于基础模型之上的、丰富的 AI 原生应用生态,大模型就一文不值」
原因很简单,基础大模型的建设,智能水平 scaling law 的同时,研发投入、数据量级、算力成本也在同步指数级增长,而对于这样一场漫无边际的军备竞赛,远非普通团队可以负担。
也是因此,到了今年,美国做基础大模型的企业只剩下 5 家,OpenAI、Anthropic、Meta、谷歌。在国内,不少头部大模型企业,也罕见的不再谈 AGI,转而分享落地方向和进展。
也是在这一时期,「超级 APP」似乎又成了行业发展的新方向。各种面向 C 端的 AI 绘画平台,AI 办公平台、AI 陪伴产品如井喷般层出不穷。然而对此倾注了极大热情的创业者与投资人们很快发现相比对大模型一时的兴趣,用户更关注产品的体验、内容的建设以及交互的便捷,这些能力的建设远非一朝一夕。
相比一股脑的卷「超级 APP」,「大模型对于 ToB 业务的改造,比互联网对于 ToB 的影响力要大一个数量级」——市场再次验证了李彦宏的认知。
早在 2023 年 5 月 9 日,百度就发布了 百度智能云千帆平台 ,作为面向企业客户的大模型平台,提供大模型推理服务和模型精调开发全套工具链,它帮助企业加速将大模型的能力应用到具体的场景中,深扎产业应用成为这一时期百度做大模型的显著特色。
但这就够了吗?李彦宏并不满足于此。
一个基础的认知是,技术的应用成本与创新的总和往往以跷跷板的结构出现。技术的成本越低,围绕技术所产生的创新就越多。最典型的代表是流量费用与移动互联网的普及速度。
上世纪九十年代,上网的费用以时间进行计费,在人均收入不过几百元的时候,1 小时的网费就可以达到 30 元上下,会上网成为小康家庭的象征。2000 年之后,ADSL 等技术出现让每个月的上网费用可以被控制在 100 元上下,借此东风,中国互联网 BAT 的格局正式形成;2010 年后出现流量包月,服务移动互联网浪潮正式开启。在这之后,流量费用一降再降。仅 2014 至 2020 年中国流量平均资费就从 131.3 元/GB 降至 3.75 元/GB 六年间降低了 97.1%,直播、短视频等行业迅速兴起,新的超级应用正式形成。
但对于大模型来说,成本不仅源于价格,更源于技术本身。如果依然是开源的模型微调,繁复的 API 对接,那么仅仅微调这一个环节,就足以让创新的数量出现指数级别的暴跌。在千帆之外,百度还在想办法进一步降低 AI 的应用门槛。
智能体是在李彦宏看来门槛非常低的一种 AI 应用,随着大模型能力不断提升,智能体的创建会非常简单,只需最简单的自然对话交互,更通俗来说用户只要几句话,就能创建自己的 AI 应用。
这一认识不仅得到了多位 AI 大牛的呼应,比如 吴恩达 看好智能体工作流,扎克伯格判断其数量会达到数十亿,比尔·盖茨认为智能体会颠覆软件行业,成为像 Android、iOS 和 Windows 一样的平台。
随着李彦宏等 AI 专家在行业里不断发声,智能体的热度不断提升,逐渐成为行业热点。今年 9 月,李彦宏曾提到「智能体还是非共识」,而这 2 个多月,智能体进化跑出了加速度,百度世界 2024 上,李彦宏抛出「智能体是 AI 应用的最主流形态,即将迎来它的爆发点」。
从圈内人士的专业词汇到如今普通人可一句话就能创建智能体,究竟意味着什么?
李彦宏的答案是「超级有用」。
02
如何打造「超级有用」的应用?
围绕「超级有用」,刚刚结束百度世界 2024 大会上,百度发布了最新的 检索增强的文生图技术(iRAG)和无代码工具「 秒哒 」。
行业角度看,过去两年,文本生成大模型基本消除了幻觉,回答问题的准确性大幅提升,但图像等多模态内容和 RAG 的结合还不够。比如让大模型生成一个北京天坛的照片,天坛是 3 层建筑,AI 生成了 4 层——明显的信息错误,将限制多模态大模型的规模化应用。

因此,百度推出的 IRAG 依托百度搜索的亿万图片资源和强大的基础模型相结合就可以生成各种真实且准确的图片。
这也不难理解,文图生成不精准,要么是大模型没有理解或者没有现有的图片参考,要么就是生成能力欠缺,百度的 iRAG 针对性解决的正是这两个问题。
根据测评,用户只需输入关键信息,如「帮我画一张马斯克和一只迅猛龙在后备箱里剥豆角」,立马可以获取一张信息无误、超真实的图片,即使该场景现实中不存在,也能生成特定人物和环境的图片。
相比过去千篇一律的漫画风、卡通风 AI 图像,这张照片不仅少了很多 AI 味儿」,更是在真实度上有了巨大提升。

优化大模型准确度,是为了更好应用落地。而围绕应用落地,智能体是目前李彦宏看好的赋能工具。
此前李彦宏曾预判,大模型发展要经历这么几个阶段,首先是 Copilot 阶段,需要人类进行辅助、把关后,才能交付成果;然后是 Agent 智能体,智能体最大的特点是有一定的自主性,具备自主使用工具、反思、自我进化等能力;最后是 Al Worker,能够像人一样独立完成各种脑力和体力劳动。
而当下正处于 Agent 智能体阶段。「智能体相当于 PC 时代的网站和自媒体时代的账号,最明显的特点是门槛足够低,谁都能上手,天花板又足够高,可以做出非常复杂,非常强大的应用。」
基于这种低门槛与高天花板的思路,「无代码」工具「秒哒」应运而生。利用「秒哒」 ,用户只需要向大模型表达出需要的智能体工作流等信息,大模型就能直接生成代码构建专属智能体。
而且,该智能体还能充分调动、合理编排文心大模型内多种知识库、智能体和工具,比如网页检索、IRAG、地图 API 等,智能高效完成任务。
也就是说,基于无代码产品,每个用户及企业都能通过自然语言交互,自己就可以搭建并指挥多个智能体协同完成任务,不需要基础的代码能力,也不需要项目经理、设计人员、开发人员、测试人员等专业人员,每个人都拥有程序员的能力。
至此,通 iRAG 让大模型更精准、通过无代码让人人可上手,「一个前所未有的只靠想法就能赚钱的时代」已经正式完成从 0 到 1 的基础设施铺垫。
03
造一个新生态:从 1 到数百万背后的应用「哲学」
基础设施从 0 到 1 的铺垫之后,如何完成从 1 到 100,再到 100 万乃至数百万的加速。
重点在于生态。
于是,一个新的产业分工开始形成:基础设施的提供者们基于大模型的压强投入与海量的数据积累起了技术的钢铁长城;开发者们则凭借专业垂直的知识积累,补全技术落地的最后一块拼图。

在基础设施侧, 截至 11 月初,百度文心大模型的日均调用量超 15 亿,相较 5 月披露的 2 亿,增长 7.5 倍,相较一年前首次披露的 5000 万次,更是增长约 30 倍,数据大超预期。
在产业应用方面,李彦宏也公布了百度的新进展,他现场发布了基于大模型的 100 大产业应用,涵盖制造、能源、交通、政务、金融、汽车、教育、互联网等众多行业。通过百度智能云千帆大模型平台,有 60% 的央国企和大量的民营企业都与百度智能云合作,累计帮助用户精调了 3.3 万个大模型,开发出了 77 万个企业级应用。

以百度和智联招聘合作为例。
在企业的招聘中,往往面临着两大难题:用人部门提出的人才需求描述主观且模糊,HR 无法据此得出可量化的简历挑选标准;与此同时,岗位分工逐渐细化,HR 认知与岗位需求之间的鸿沟随之越来越大。
如果无法解决这两大问题,不仅会消耗 HR 的时间和精力,企业招聘周期变长,甚至错失人才也成为常态。通过自然语言对话获取求职者关键信息,结合岗位描述快速绘制精准匹配画像,精准推荐职位并筛选人才,提升用人和求职双方效率。
现在双方已合作沉淀出系列提示词模板,在数万条数据中验证,场景平均准确率高达 93%,这无疑为招聘行业带来革新。
又比如客服领域,在当下,公司类智能体重要性不亚于传统互联网时代的公司官网,在公司基本信息、产品介绍、门店位置等传统官网具备的能力基础上,公司类智能体还具备主动推荐、及时响应和服务能力。百胜集团依托百度的客服产品和大模型能力打造的相关智能体,已经可以解决识别客户意图和上下文关联难题,并覆盖百胜全线业务,日会话峰值达数十万,调用量峰值数百万,问题解决率提升至 90%。
李彦宏在大会现场展示的文心智能体平台上的 TOP100 智能体,既有农民院士智能体等角色类,也有工具、行业、职场、情感、娱乐等各类场景的智能体,涵盖各行各业应用的方方面面。此外百度发布了全新工具类智能体自由画布。
近日,沙利文发布报告《2024 年全球 AI 生态全景概览》则对百度的 AI 生态建设成果做了精准总结,在全球 AI 生态全景中,百度与谷歌、OpenAI 位于 AI-Native Giant 同一象限。

沙利文研究,全球 AI 生态全景概览与趋势分析
「以应用为核心」这即是百度做大模型初心,也是百度有了如今成果的军功章。
04
结尾
像一棵树一样,企业的成功,也是有年轮的。
眼花缭乱的数字与层出不穷的产品只是最终的成果,真正的答案,藏在历史中那些幽微的思考与前行印记中。
2014 年,风华正茂的百度,在太庙与美国的奇点大学进行了一场关于人工智能的主题分享。并现场提出一个判断:十年内,人工智能的发展将会迎来「奇点」,在此之后,人类的能力进化将永远迟滞于 AI 的边界扩张,即便是小公司,也能依靠人工智能与行业巨头站在同一竞技舞台。作为分享背景的则是夜幕降临下打在太庙墙上的巨大百度 LOGO。
而那时的人工智能,既没有迎来 AlphaGo 大战李世石的举世瞩目,距离 ChatGPT 惊艳全人类也有八年之遥。
但也正是在那个人工智能还无人问津的时刻,百度开始坚定投入 AI 研发,向大洋彼岸的尚未拿下诺贝尔奖的 Geoff Hinton 抛去橄榄枝,并由李彦宏亲自带队建立起了深度学习研究院,并在此后十年时间里,延揽「谷歌大脑之父」吴恩达等领军人才、发布「少帅计划」,年薪百万招募全球 30 岁以下的 AI 精英……搭建起了一个由芯片层、框架层、模型层以及应用层组合起来的完整 AI 技术架构。

百度深度学习院,AI 相关人才
这十二年的漫长探索,跨越了 AI 的多个发展周期,见证了从深度学习到大模型每一个关键发展阶段的潮起潮落,从深度学习平台到千帆平台、智能体开发平台再到如今的无代码工具,不变的是百度一直在用技术去解决实实在在的问题,将普通人开发应用的门槛打下来。
表面看,这是一个搜索起家在 AI 上拥有先手优势企业的顺势而为,内核里,却是百度对 AI 长期主义信仰的坚持。
而在这一过程中,时间的价值就在于,在海面之上,用一盏灯点亮另一盏灯。基于百度 AI 架构的搭建起的 AI 生态,正如李彦宏所说, 「我们即将迎来 AI 应用的群星闪耀时刻。每一个应用都是一颗星,每一个应用都将成为改变世界的力量。」
*头图来源:百度
本文为极客公园原创文章,转载请联系极客君微信 geekparkGO